If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6q^2=1
We move all terms to the left:
6q^2-(1)=0
a = 6; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·6·(-1)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*6}=\frac{0-2\sqrt{6}}{12} =-\frac{2\sqrt{6}}{12} =-\frac{\sqrt{6}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*6}=\frac{0+2\sqrt{6}}{12} =\frac{2\sqrt{6}}{12} =\frac{\sqrt{6}}{6} $
| (0.75x-3)=9 | | 5x=6x-13 | | 40=32t+200 | | 2x−7=8x+11 | | 3x+8+2x-10=180 | | 3x+21=7x-43 | | 7-6n=-8n-9 | | 5(2x-3)=7x+24 | | G(x)8=16 | | 4x^+2x=12 | | 15+5x=6x+8 | | F(x)2=7 | | 15x-8-13x=16 | | 2*2x=8x | | 80x-23/23*100=16 | | 50-x=2 | | (6x+20)°(8x-10)°=180 | | -86x-134=20 | | (3x-4)125=180 | | 3(m-4)+2m=3 | | 3x-4125=180 | | 5(-3z+8-2z=-12 | | 1/3(18x+6)=2x+14 | | 4y+5=3y-10 | | 75+x=2x+10 | | b+3/2b+(b+45)+(2b-90)+90=520 | | 5x-9=(-4+x)x-3 | | 2x^2^6=0 | | 1.9s-15.81-18.7s=4.99-14.8s | | 5x+1°8x+10°=180 | | 45+(2k+k)=180 | | 15/20=6/y |